Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
We have pages for several common software packages. Click the links below or follow the guide on the left of your screen.
To use the package manager (apt
) on the Demo image, you'll need to change your timezone.
First, you'll need to locate the correct timezone file at /usr/share/zoneinfo
. There should be a folder for your country and a file in that folder for the closest city to you.
For example, if you're in Central Time USA, you'd use the following commands:
Now, you can run sudo apt update
and sudo apt upgrade
to get your system up to date.
ROS on NavQ will allow you to interface with sensors, control your drone using MAVROS, and more. To get started, follow the install guide below and then continue to the next sections.
NOTE: ROS1 support is good, but the Mobile Robotics team at NXP's focus is on ROS2. There is a lot more documentation on ROS1 than ROS2, but ROS2 may be easier to use in the long run. We suggest that you do not cross-polinate with ROS, i.e. only use ROS1 or ROS2, not both. Keep in mind that any documentation under the ROS1 section is for ROS1 only, and vice versa.
NOTE: HoverGames participants should be using the Demo image. If you flashed your NavQ with the image from the HoverGames website, or if you're using the image that came installed on the SD Card included in your kit, you're using the Demo image.
When you install ROS Noetic on your NavQ, make sure to install the base version of ROS and not the desktop version. If you install the desktop version, critical gstreamer packages for NavQ can be overwritten and therefore become non-functional.
To install ROS, you need to be on the Demo image. You can follow the guide for installing ROS Noetic Ninjemys at http://wiki.ros.org/noetic/Installation/Ubuntu
If you're using NavQ comercially and are running the HoverGames-BSP image, you'll follow these steps.
ROS Melodic is automatically installed on the HoverGames-BSP image. It includes MAVROS by default. You will need to do a little bit of setup, though, once you first boot your image.
Run the following commands to enable ROS on the HoverGames-BSP image:
You'll also want to download the following script and run it to install GPS geoids:
Now, you can continue with the ROS tutorials for setting up a build environment and installing your first package. We will go over this in the next section.
The 8MMNavQ can control your HoverGames drone by communicating with the RDDRONE-FMUK66 over MAVROS. A UART cable will be included in the kit that connects the UART3 port on the 8MMNavQ to the TELEM2 port on the RDDRONE-FMUK66.
NOTE: This page is for ROS1 only. MAVLINK and MAVROS are deprecated for ROS2 applications. ROS2 uses microRTPS and PX4 ROS Com in place of MAVROS.
NOTICE: When running the off-board script, make sure that you confirm the landing zone for your drone in QGroundControl. The local position parameter in the offboard ROS node is set to x:0, y:0, z:2, which means it will hover at 2 meters above its landing zone. If the drone takes off from a position away from its landing zone, it will quickly return to its landing zone and hover 2 meters above it. This is especially important to note if you turn the drone on indoors and then place it somewhere outside to take off. We don't want your drone to smack into a building!
Connect to your FMU over USB and open QGroundControl. Navigate to Settings -> Parameters -> MAVLink and set these parameters:
Also, you'll need to make sure that the settings in Settings -> Parameters -> Serial look like this:
A coding guide for the ROS node we will be using is located at the link below.
This guide will help you install the ROS node outlined in the MAVROS Offboard Example.
To start, you'll want to make sure that you have already set up a development environment for ROS. ROS has a guide on how to get a catkin workspace set up in the link below.
Once you've completed that tutorial, you'll maybe want to add an extra line to your ~/.bashrc
so that your devel/setup.bash
is always sourced when you open a new terminal:
This will ensure that your development environment is properly set up when you open a new shell.
Follow the "binary installation" guide on the page below to install the necessary MAVROS packages from apt.
Make sure to use 'noetic' in place of 'kinetic' in the commands they give you on this page. Also, you do NOT need to follow the "Source Installation" section of the guide.
To create our first ROS package, we will want to navigate to our catkin workspace's src
folder and run the following command:
This command will create a new package folder named offb
and will add the dependencies roscpp
, mavros_msgs
, and geometry_msgs
to the 'CMakeLists.txt' and 'package.xml' files. Next, you'll want to take the code from the PX4 MAVROS example and create a file named offb_node.cpp in the src/
folder in the offb
package. Your directory structure should now look like this:
In order to build your ROS package, you'll need to make some edits to CMakeLists.txt so the catkin build system knows where your source files are. Two edits need to be made.
The first edit is to add your executable to CMakeLists. Your executable should be named offb_node.cpp. Uncomment line 136 to add it:
The second edit is link your target libraries (roscpp, mavros_msgs, and geographic_msgs). Uncomment lines 149-151 to do so:
And that's all you need to do for now to set up your workspace!
To build your ROS node, return to the root of your catkin_ws/
directory and run:
To run our ROS node, we need to make sure that MAVROS is running. On the NavQ, run the following command:
This will start roscore
and the mavros
node with a pointer to the UART port /dev/ttymxc2
at a 921600 baud rate. To run the ROS node we created, run the following in an ssh terminal:
and your drone should take off to an altitude of 2 meters!
In this guide, we need a few things:
NavQ Companion Computer mounted with Google Coral Camera attached
Laptop/Phone with QGroundControl Installed
Both NavQ and mobile device connected to the same WiFi network
In QGroundControl, click the Q logo in the top left, and configure the video section as seen in the image below:
This will set up your QGroundControl instance to receive the UDP video stream from the NavQ.
Follow the WiFi setup guide using connman
in the Quick Start guide to connect your NavQ to the same router as your mobile device. You will need to use the serial console to do this. Once you have your NavQ connected, you can run ifconfig
in the serial console to find the IP address of your NavQ.
You can SSH into the NavQ to run the GStreamer pipeline once you have the IP.
With your NavQ on, SSH into it by using the IP address you noted when connected to the serial console. Once you're successfully SSHed in, you should note the IP address that you logged in from as seen here:
This is the IP of your computer that you should be sending the video stream to.
To run the GStreamer pipeline, run the following command:
Make sure to replace the 'xxx.xxx.xxx.xxx' with the IP you noted when first SSHing into the NavQ.
Once you run that command, you should be able to see the video stream from your NavQ on QGroundControl!
NOTE: ROS2 is new, but we suggest you use it over ROS1, as ROS1 will be deprecated in the near future. You may run into issues with the ROS2 section of this Gitbook. If you have any issues with the guide, please email landon.haugh@nxp.com if external, or use Teams/Email if internal. MAVROS is not compatible with ROS2. MicroRTPS and PX4 ROS Com replace MAVROS.
Follow the guide at the link below to install ROS2 Foxy Fitzroy on your NavQ running the Demo image.
Note 1: at Setup Sources step you might get an error message by curl. To avoid this, run the following commands:
Note 2: at Install ROS2 package step, run the ros-foxy-ros-base
installer, as the Desktop tools are not needed on NavQ:
FastRTPS and the microRTPS agent are needed on NavQ in order to bridge uORB topics from PX4 to ROS2 on NavQ over a UART or UDP connection. Follow the guide below to build and install these packages.
NOTE: FastRTPS and PX4 ROS Com work differently from MAVROS (ROS1). PX4 ROS Com subscribes to uORB topics rather than MAVLINK messages. See below for a diagram of how microRTPS and PX4 ROS Com works.
Follow the link below for more details on microRTPS and PX4 ROS Com:
First, we will install the FastRTPS project from eProsima. Use the following commands below to do so:
Next, we will build and install the necessary software that will allow us to use ROS2 to communicate with the microRTPS bridge. First, run the following commands:
URGENT: Building px4_ros_com requires a lot of ram. Enabling a swap disk is highly recommended. This will take up 1GB of space on your storage medium.
Run the following commands to enable a 1GB swapfile:
Now, build the workspace:
This will take a long time to build on NavQ. In our experience, it takes anywhere from 45 minutes to an hour. Make sure you have a stable connection to NavQ over UART or SSH, and do not let the NavQ lose power!
In order to run all of your specific ROS2 software successfully, you must source the install/setup.bash files in each of your ROS2 workspace folders. Add the following lines to your .bashrc to do so:
Continue to the next page to set up a systemd
service that will automatically start the micrortps agent on your NavQ. The guide will also cover how to automatically start the client on the FMU.
Generate a start up script for the micrortps client under /usr/local/bin
with content
Save the file and exit nano. Make the file executable
Generate a systemd service file to start the startup script at boot
with content
Save the file and exit nano. Check if the process starts
You should see an state active (running), quit with <q> Enable the systemd service file finally to be active at boot